Sains Malaysiana 53(6)(2024): 1377-1387
http://doi.org/10.17576/jsm-2024-5306-12
Characterization and Correction of
Fading Effects in GeDOFs Microdosimeter for Absorbed Dose Measurements
(Pencirian dan Pembetulan Kesan Pudar dalam Mikrodosimeter GeDOFs untuk Pengukuran Dos Serap)
NORAMALIZA MOHD NOOR1, NIZAM
TAMCHEK2, UNG NGIE
MIN3, MOHD TAUFIK
DOLAH4 & MUHAMMAD
SAFWAN AHMAD FADZIL5,*
1Department of Radiology,
Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Physics,
Faculty of Science, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
3Clinical Oncology Unit,
Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Radiation Safety and Health
Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
5Diagnostic Imaging and
Radiotherapy Program, Centre for Diagnostic, Therapeutic and Investigative
Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
Received: 8 October
2023/Accepted: 2 May 2024
Abstract
This study investigates the thermoluminescence (TL) fading of fabricated
germanium-doped optical fibers (GeDOFs)
with a focus on TL signal intensity, glow curve, best-fit curve, and correction
factor. Two distinct GeDOFs geometries, cylindrical fiber (CF) and flat fiber (FF),
were compared for TL intensity decay under 6 MV and 10 MV photon beams. TL
intensity measurements were recorded from the first day post-irradiation to the
106th day and a comparison of two fading curve-fitting approaches
was carried out. Fading correction factor () was derived, and the corresponding
uncertainties were calculated. Over time, GeDOFs exhibited a decline in TL
intensity, with a notably rapid decay occurring in the initial 30 days after
irradiation. The most substantial TL intensity loss was observed in FF, with
values of 58.9% for 6 MV and 63.4% for 10 MV. The evaluation of curve fitting
showed that the best conformity was achieved through a single exponential decay
equation model. The area under the glow curve decreased as the time between GeDOFs irradiation and TL readout increased. was determined by comparing the fading
function of reference GeDOFs to that of the measured ones. The estimated
uncertainties associated with
were found to be 0.06% for CF and 0.12% for
FF, respectively. GeDOFs exhibit fading characteristics influenced by TL
readout interval time and radiation energy. When quantifying the absorbed dose
from photon beams, it is crucial to account for the fading correction factor to
ensure the precise and accurate measurement of the dose.
Keywords:
Correction factor; dosimetry audit; fading; Ge-doped optical fibres
Abstrak
Kajian ini meneliti kemerosotan termopendarcahaya (TL) gentian optik dop Ge yang difabrikasi (GeDOFs) dengan tumpuan diberikan kepada keamatan isyarat TL, lengkungan bara, lengkungan padanan terbaik dan faktor pembetulan. Dua geometri GeDOFs yang berbeza, gentian silinder (CF) dan gentian leper (FF) dibandingkan tahap kemerosotan keamatan TL di bawah sinaran foton 6 MV dan 10 MV. Pengukuran keamatan TL direkodkan dari hari pertama selepas penyinaran hingga hari ke-106 dan perbandingan antara dua pendekatan padanan lengkungan kemerosotan telah dijalankan. Faktor pembetulan kemerosotan signal (
) diterbitkan dan ketidakpastian yang berkaitan telah dihitung. Seiring berjalannya masa, GeDOFs menunjukkan penurunan keamatan TL dengan kemerosotan yang ketara berlaku dalam tempoh 30 hari pertama selepas penyinaran. Kehilangan keamatan TL yang paling ketara diperhatikan pada FF, dengan nilai pengurangan sebanyak 58.9% untuk 6 MV dan 63.4% untuk 10 MV. Penilaian padanan lengkungan menunjukkan bahawa padanan terbaik dicapai melalui model persamaan kemerosotan eksponensial tunggal. Kawasan di bawah lengkungan bara berkurang apabila masa antara penyinaran GeDOFs dan pembacaan TL meningkat.
ditentukan dengan membandingkan fungsi
kemerosotan signal GeDOFs rujukan dengan yang diukur. Anggaran ketidakpastian
yang berkaitan
berada pada kadar 0.06% untuk CF dan 0.12% untuk FF. GeDOFs menunjukkan ciri kemerosotan signal yang dipengaruhi oleh selang masa bacaan TL dan tenaga sinaran. Apabila mengukur dos terserap daripada sinaran foton, adalah penting untuk mempertimbangkan faktor pembetulan kemerosotan signal untuk memastikan pengukuran dos yang tepat.
Kata kunci: Audit dosimetri; faktor pembetulan; gentian optik dop Ge; kemerosotan signal
REFERENCES
Abdullah, N., Bradley, D.A., Nisbet, A., Zaman, Z.K., Deraman,
S.S. & Noor, N.M. 2022. Dosimetric characteristics of fabricated germanium doped optical fibres for a postal audit
of therapy electron beams. Radiation
Physics and Chemistry 200: 110346.
Baghel, S.K., Brahme,
N., Bisen, D.P., Patle, Y., Richhariya, T., Chandrawanshi,
E. & Belodhiya, C. 2022. Luminescence properties
of a novel cyan-blue light emitting Ce3+ doped SrZrSi2O7 phosphor. Optical Materials 126:
112141.
Begum, M., Rahman, A.M., Begum, M.,
Abdul-Rashid, H.A., Yusoff, Z. & Bradley, D.A.
2018. Harnessing the thermoluminescence of Ge-doped
silica flat-fibres for medical dosimetry. Sensors and Actuators A: Physical 270: 170-176.
Benabdesselam, M., Mady,
F., Cieslikiewicz-Bouet, M., Blanc, W., El Hamzaoui, H., Cassez, A., Bouwmans, G., Bouazaoui, M. & Capoen, B. 2023. Ge-doped optical fibers for passive and active radiation detection modes. IEEE Sensors Journal 23: 6948-6955.
Bos, A.J. 2017. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10: 1357.
Bradley, D.A., Mahdiraji,
G.A., Ghomeishi, M., Dermosesian,
E., Adikan, F.R.M., Rashid, H.A. & Maah, M.J. 2015. Enhancing the radiation dose detection
sensitivity of optical fibres. Applied
Radiation and Isotopes 100: 43-49.
Chen, R. 2020. Conduction
band-valence band theory of TL and OSL: Emphasis on delocalized transitions and
explanation on some unusual effects. Radiation
Protection Dosimetry 192(2): 178-195.
Du, J., Feng, A. & Poelman, D. 2020. Temperature dependency of
trap‐controlled persistent luminescence. Laser & Photonics Reviews 14: 2000060.
Engin, B., Aydaş,
C. & Demirtaş, H. 2010. Study of the thermoluminescence dosimetric properties of window glass. Radiation
Effects & Defects in Solids: Incorporating Plasma Science & Plasma
Technology 165: 54-64.
Fadzil, M.S.A., Noor, N.M., Min, U.N., Abdullah,
N., Dolah, M.T., Pawanchek,
M. & Bradley, D.A. 2022a. Dosimetry audit for megavoltage photon beams
applied in non-reference conditions. Physica Medica 100: 99-104.
Fadzil, M.S.A., Noor, N.M., Tamchek, N. & Min, U.N. 2022b. Time-temperature profiles
effect on thermoluminescence glow curve formation of
germanium doped optical fibres. Sains Malaysiana 51(5): 1557-1566.
Fadzil, M.S.A., Tamchek,
N., Ung, N.M., Alawiah, A., Abdullah, N., Bradley,
D.A. & Noor, N.M. 2018. Assessment of thermoluminescence glow curves and kinetic parameters of fabricated Ge-doped flat fiber for radiotherapy application. Jurnal Sains Nuklear Malaysia 30: 1-14.
Ghomeishi, M., Mahdiraji,
G.A., Adikan, F.M., Ung, N.M. & Bradley, D.A.
2015. Sensitive fibre-based thermoluminescence detectors for high resolution in-vivo dosimetry. Scientific Reports 5:
13309.
Gonzales-Lorenzo, C.D., Callo-Escobar, D.J., Ccollque-Quispe,
A.A., Rao, T.G., Aragón, F. F.H., Aquino, J.C.R. & Cano, N.F. 2022. Effect
of annealing temperature on the structural, thermoluminescent,
and optical properties of naturally present salt from Lluta region of Peru. Optical Materials 126: 112215.
Hassan, M.F., Rahman, W.N.W.A., Tominaga, T., Geso, M., Akasaka, H., Bradley, D.A. & Noor, N.M. 2019. Ge-doped
silica fibre for proton beam dosimetry. Radiation Physics and Chemistry 165: 108390.
Kandan, V., Hassan, M.F., Omar, N., Shahar, H.K., Mohamad, F., Karim, M.A., Sani, S.A.,
Bradley, D.A. & Noor, N.M. 2021. Advanced glow curve analysis of fabricated
fibres for various sources of ionizing radiation. Radiation Physics and Chemistry 178: 108981.
Lam, S.E., Bradley, D.A., Mahmud,
R., Pawanchek, M., Rashid, H.A. & Noor, N.M.
2019. Dosimetric characteristics of fabricated
Ge-doped silica optical fibre for small-field dosimetry. Results in Physics 12: 816-826.
Maruyama, D., Yanagisawa, S., Koba, Y., Andou, T. &
Shinsho, K. 2020. Usefulness of thermoluminescent slab dosimeter for postal dosimetry audit of external radiotherapy systems. Sensors & Materials 32: 1461-1477.
Mat Nawi, S.N.B., Wahib,
N.F.B., Zulkepely, N.N.B., Amin, Y.B.M., Min, U.N.,
Bradley, D.A., Md Nor, R.B.
& Maah, M.J. 2015. The thermoluminescence response of Ge-doped flat fibers to gamma
radiation. Sensors 15:
20557-20569.
Noor, N.M., Nisbet,
A., Hussein, M., Chu, S., Kadni, T., Abdullah, N.
& Bradley, D.A. 2017. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile. Radiation
Physics and Chemistry 140: 207-212.
Noor, N.M., Fadzil,
M.S.A., Ung, N.M., Maah, M.J., Mahdiraji,
G.A., Abdul-Rashid, H.A. & Bradley, D.A. 2016. Radiotherapy dosimetry and
the thermoluminescence characteristics of Ge-doped
fibres of differing germanium dopant concentration and outer diameter. Radiation Physics and Chemistry 126:
56-61.
Noor, N.M., Hussein, M., Kadni, T., Bradley, D.A. & Nisbet,
A. 2014. Characterization of Ge-doped optical fibres for MV radiotherapy
dosimetry. Radiation Physics and
Chemistry 98: 33-41.
Pereira, J., Pereira, M.F., Rangel,
S., Saraiva, M., Santos, L.M., Cardoso, J.V. &
Alves, J.G. 2016. Fading effect of LiF: Mg, Ti and LiF: Mg, Cu, P ext-rad and whole-body detectors. Radiation Protection Dosimetry 170: 177-180.
Sarasola-Martin, I., Correcher,
V. & García-Guinea, J. 2021. Characterization of
the red thermoluminescence emission of doped alumina:
A case study for Al2O3:C and Al2O3:Cr, Ni. Journal
of Alloys and Compounds 886: 161262.
Sen, M., Shukla, R., Pathak, N.,
Bhattacharyya, K., Sathian, V., Chaudhury,
P. & Tyagi, A.K. 2021. Development of LiMgBO3:Tb3+ as a new generation material for thermoluminescence based personnel neutron dosimetry. Materials
Advances 2(10): 3405-3419.
Sorger, D., Stadtmann,
H. & Sprengel, W. 2020. Fading study and readout
optimization for routinely use of LiF: Mg, Ti thermoluminescent detectors
for personal dosimetry. Radiation
Measurements 135: 106342.
Termsuk, C., Sweeney, S.J. &
Shenton-Taylor, C. 2022. Thermoluminescence glow
curve study of beta irradiated germanium doped core fibre with different dopant
concentrations. Radiation Physics
and Chemistry 193: 109974.
Theinert,
R., Kröninger, K., Lütfring,
A., Mender, S., Mentzel, F. & Walbersloh,
J. 2018. Fading time and irradiation dose estimation from thermoluminescent dosemeters using glow curve deconvolution. Radiation Measurements 108: 20-25.
Weinstein, M., Dubinsky, S., Izak-Biran, T., Leichter, Y.,
German, U. & Alfassi, Z.B. 2003. A simple method
for avoiding fading correction of absorbed dose from glow curves of
TLD-100. Radiation Measurements 37:
81-86.
Zakaria, Z., Aziz, M.A., Ishak, N.H., Suppiah, S., Bradley,
D.A. & Noor, N.M. 2020. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped
optical fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 166: 108487.
*Corresponding author; email:
safwanfadzil@ukm.edu.my
|